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A B S T R A C T

Precision livestock management incorporates new technologies, including bio-loggers, to remotely monitor
livestock health and behavior. Despite the potential benefits in extensive cattle systems, limited adoption of these
sensors has occurred potentially due to cost, technical, or processing challenges. We resampled high-resolution
GPS and accelerometer data across multiple epochs (spanning 10 s to 15 min) to evaluate which combinations of
devices, data features, and epochs might be considered optimal for assessing resting, grazing, travel, and
rumination behavior in free-ranging cattle. We used random forest models to predict cattle behavior across the
growing season to assess how variations in model accuracy were reflected in inference of activity budgets.
Classification accuracy was greatest (>0.90) when GPS information was combined with at least one acceler-
ometer metric. Epochs of 30–90 s provided the greatest classification accuracy, although epochs up to 300 s had
similar classification accuracies, but with increased variability in accuracy. Classification accuracies decreased
when we included rumination, but similarly had the greatest performance when both GPS and a full suite of
accelerometer features was used (accuracy of ~0.90). Average daily grazing time (8.3 h day-1) was within 2 h
across devices, epochs, and behavioral schemes. Rumination time was again similar across devices and epochs,
averaging 6.5 h day-1. Daily travel distance decreased by ~4 km as the GPS fix interval increased from 10 s to 15
min. This study provides guidance for balancing fine-scale data collection with data processing and battery
limitations for assessing cattle behaviors in extensive rangelands.

1. Introduction

Precision livestock management techniques, such as the use of bio-
logging sensors including Global Positioning Systems (GPS) and accel-
erometers, have enormous promise for increasing welfare and produc-
tion of livestock [1] by allowing producers to pivot from reactive to
proactive decision-making [2]. In fact, the rapid increase in technology
over the past several decades has led to numerous innovations in live-
stock management [3]. For example, in western North America, most
beef cattle operations depend on vast rangelands—frequently including
public lands across arid or semi-arid landscapes—with inherent diffi-
culties in monitoring herds in these extensive systems [4]. However,
technologies are adding insight into spatial patterns and behaviors, as
well as health [5] and parturition [6] monitoring. Additionally,
GPS-based virtual fences are being investigated for their role in

excluding cattle from certain areas such as sensitive riparian habitats [7]
or recently burned areas [8] and facilitating targeted grazing to create
fire breaks in landscapes [9].
Despite the promise of precision livestock management, there have

been challenges in widespread adoption of technologies, with evidence
that implementation in extensive beef cattle operations has been lower
than other sectors [10,11]. Some of the barriers to implementation for
behavioral monitoring include the high up-front costs associated with
purchasing commercial GPS or accelerometer units for large scale de-
ployments [12]. Additionally, some commercial systems have pro-
prietary methods for behavioral classification (e.g., [13,14]), which may
limit flexibility in application and inference. As an alternative,
custom-built loggers are often substantially cheaper and allow greater
flexibility in processing techniques [15]; however, they also require
greater technical knowledge which may reduce useability and adoption
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[12,16]. While GPS units, accelerometers, and similar sensors can pro-
vide detailed information on behavior and activities, they can also
generate gigabytes to terabytes of data, providing challenges associated
with processing and analyzing which also make them difficult to
implement for researchers, let alone producers [17,18].
A potential option for improving usability of bio-logging technology

is streamlining data collection by defining what parameters from various
bio-loggers over what time intervals are required to accurately define
specific behaviors in inferentially meaningful ways. For example,
behavior metrics can be derived from GPS units by calculating velocity
and relative angles between locations to derive various animal activities
such as resting, foraging, and travelling [19]. However, GPS devices
have a wide range of programmable fix rates (i.e., locations collected at
intervals of minutes to days), and such variation can yield vastly
different interpretations of metrics such as travel distance [20,21].
When the interval between fixes is longer, distances become too linear
and underestimate the fluid and tortuous movement of animals;
conversely short intervals between fixes often over-estimate tortuous
movement due to error in the GPS locations [22,23]. Behavior metrics
can be derived from accelerometers as acceleration signals along three
axes and can be used alone, or in combination with GPS information.
While accelerometer data are generally sampled at very high-resolution
frequencies (e.g., 12 Hz), the raw data are usually summarized over time
intervals (e.g., 30 s), or epochs, which can impact classification accuracy
[24]. From an accelerometer standpoint, shorter epochs are thought to
be better because there is less mixing of behavioral signals [25], but
longer epochs (i.e., over several minutes) should not be dismissed
without investigation as they may be sufficient for some animals, like
cattle which typically move slowly, to achieve accurate results while
reducing the load on data storage or transfer systems [26]. Therefore,
using bio-logging sensors such as GPS and accelerometers in precision
livestock management requires knowledge on the balance between
retaining the most information to accurately derive behaviors while
minimizing the influence of GPS error or accelerometer summarization,
a long-standing challenge to broad implementation of these devices
across precision agriculture and scientific research.
Here, we investigated varying epochs (i.e., interval of time over

which raw data are aggregated; [25]) and how they influenced the ac-
curacy of machine learning-based behavior classification derived from
custom-built tracking devices on free-ranging cattle in extensive ran-
gelands of the western North American Great Plains. We then extended
our investigation into how varying epochs impact behavioral inferences.
We focused on the influence of varying epochs on estimates of grazing
animal activities such as foraging behavior, which has been previously
linked to weight gains [27], ruminating, which is an indicator of health
and forage characteristics [28,29], and distances travelled, which is
influenced by variation in foraging conditions [30]. Our aim was to
provide insight into the optimal epoch or range of epochs over which
cattle behavior can be derived from GPS and accelerometers, to guide
data collection and facilitate improved comparison across studies, as
suggested by Anderson et al. [31]. Specifically, our objectives were to
examine 1) classification accuracy using GPS units alone, accelerome-
ters alone, and GPS units with accelerometers using either broad suite or
a simplified set of acceleration metrics across different epochs, and 2)
examine differences in behavior-specific time allocations and travel
distances. Cattle are large, generally slow-moving ungulates, so we ex-
pected behaviors of interest (e.g., grazing) would be sufficiently iden-
tifiable at <2 minutes, given previous work comparing 5-min and 4-s
estimates of grazing [27]. We also expected accelerometers to have
overall greater behavioral classification accuracies given the amount of
information obtained from tri-axial signals, but also to have the greatest
decrease in accuracy as signals were averaged over increasingly greater
epochs.

2. Materials and methods

2.1. Study location and collar deployment

This study was conducted from mid-May to early October 2020 and
2021 at the Central Plains Environmental Research station near Nunn,
Colorado, which is part of the United States Department of Agriculture-
Agricultural Research Service (USDA-ARS) Long-Term Agroecosystem
Research network. The study site was located in the semi-arid shortgrass
steppe ecosystem [32], and detailed characteristics of the site and sur-
rounding rangelands are described in Augustine et al. [33,34]. Annual
precipitation was 262 mm and 380 mm in 2020 and 2021, respectively
[35]. We studied mixed British breed (e.g., Angus and Charolais) year-
ling steers that arrived at each year in mid-May at a mean liveweight of
~270 kg and grazed shortgrass rangeland until early October when they
reached a liveweight of ~400 kg. In 2020, we collared 2 steers in each of
10 herds that consisted of 23–27 animals grazing within 130-ha pad-
docks for the entire growing season (mid-May–October) and collared 7
steers in each of two heard consisting of 122 animals rotated among five
130-ha paddocks over the growing season (34 collared steers in 2020).
In 2021, we collared 2 or 3 steers in each of 12 herds of 23–27 steers
grazing within 130-ha paddocks for the entire growing season, 6 steers
in each of 2 herds of 60–66 steers grazing in 360-ha paddocks, and 7
steers in each of 2 herds of 107 animals rotated among four 130-ha
paddocks over the growing season (56 collared steers in 2021).
Cattle collars were designed and assembled by research staff and

included a GPS data logging device (model P-1, Columbus, Berlin,
Germany) and a tri-axial accelerometer (model X-16, Gulf Coast Data
Concepts, LLC, Waveland, MS, USA). Materials for collar construction
cost approximately $360 per unit (Supplementary materials: Table A1).
Location fixes were collected at a 1-s intervals (i.e., the GPS unit
remained continuously connected to visible satellites) and differently
corrected onboard (e.g., [19]); a configuration that allowed units to run
for 44 continuous days on a 30 Ah lithium polymer battery. The tri-axial
accelerometer measured acceleration in the X(surge), Y (sway) and Z
(heave) axes at approximately 12 Hz. Accelerometers were powered by
5200 mAh lithium-ion battery packs with a run time of approximately
60 days and were configured and deployed as described in Brennan et al.
[36]. Both devices stored data on microSD cards. Electronics were
enclosed in a waterproof, high-impact resin case (model T4000, S3 Case
Company, Jackson, WY, USA) which was fixed into an aluminum cradle
attached to livestock neck belts, with the case and cradle hanging under
the animal’s neck. Buckles on both sides of the neck belts were oriented
to allow adjustment for size, with collars fitted to ensure that a person’s
fingers could fit between the animal’s neck and the inside of the collar
(Fig. 1). Total weight of the collar with the cradle, case, and all contents
was 1.8 kg.
At the end of June and mid-August, batteries were replaced when

cattle were gathered for weighing. Collared steers were checked multi-
ple times each week to confirm that the collars were still attached.
Dropped collars were retrieved as soon as possible and rebuilt, if
necessary, before being redeployed, and data from periods when the
collars were on the ground were removed from analyses. Fixes from
dropped collars were used to estimate stationary error of GPS units,
whereby we used the mean location for each dropped collar as the
location of the collar, then calculated the distance of each fix from the
mean location as an estimate of error.

2.2. Data processing and feature extraction

To examine the influence of GPS fix rate on behavioral classification,
we subsampled 1 Hz GPS fixes to 10, 30, 60, 90, 120, 180, 240, 300, 600,
and 900 s intervals. We calculated step lengths and turn angles of sub-
sampled tracks via the adehabitatLT R package v. 0.3.27 [37,38] in R v.
4.3.2 [39] and used step lengths to calculate velocity (m min-1). We
developed a suite of seven features to describe GPS-based movement
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including turning angle, incoming velocity (i.e., the velocity of move-
ment from the previous point to the current location) and outgoing
velocity (i.e., the velocity of movement from the current location to the
next location), moving window average and standard deviation of
turning angles over five locations (to get at measures of tortuosity), and
count and sum of points within a 10 m radius (measures of point prox-
imity; Table 1; [36]). We included both incoming and outgoing velocity,
with the expectation that differences between the two would improve
the model’s ability to differentiate behavior, and perhaps select the more
erratic movements as stationary (i.e., because of error). We generated
buffers (i.e., circles of 10-m radii around locations) using the sf R
package v. 1.0–14 [40].
To examine the influence of summarizing 12 Hz accelerometer data

across various epochs on behavioral classification, we first partitioned
the raw acceleration signal of each axis into static and dynamic com-
ponents to separate out the effects of gravity from motion [41]. We used
an approximately 3-s moving window (38 data points to account for
slight variation above 12 Hz) to estimate static acceleration [42] and
subtracted the static acceleration (denoted as SX, SY, SZ) from the raw
acceleration to obtain acceleration from dynamic movement alone (DX,
DY, DZ; [41]). Like the GPS data, we summarized acceleration data over
10, 30, 60, 90, 120, 180, 240, 300, 600, and 900 s epochs, calculating a
suite of features to describe animal movement, including the vectorial
sum of dynamic acceleration (VeDBA; [43]), pitch [44], and means,
standard error, skew, kurtosis, minimum, and maximum of each axis,
along with pitch and VeDBA, resulting in a total of 48 features (Table 1).
We reiterate that an epoch in this study refers to a time interval over
which we have aggregated raw data [24,25], though they have an
alternative definition for neural networks [45]. We centered and scaled
all variables and used recursive feature elimination to reduce the
number of predictors for the accelerometer data [46] via the caret
package v. 6.0–94 [47] for each epoch. This removed eight features that
were determined to be the least influential across all 10 epochs (mean
DX, minimum DX, maximum DX, mean DY, mean DZ, maximum VeDBA,
DX skew, and SX skew).

2.3. Behavior observations

To translate GPS and acceleration signals into behavior metrics, in-
field observations of collared steers were conducted periodically dur-
ing the two grazing seasons. Six or 8 observers were trained as a group to
record cattle behavior in 2020 and 2021, respectively. One observer
followed and recorded the behaviors of a single steer, while up to 8
observers may have been observing different steers concurrently (in the
same or a different pasture). Observations began during morning hours
and continued until early afternoon (typically ranging 5–6 h), to
encompass bouts of various behaviors within a given day. Observers
used a smartphone app (Emerald Time; Emerald Sequoia LLC) to syn-
chronize their observations with satellite time. Activity classes consisted
of travelling (walking without grazing and head up), grazing (including
grazing while walking if the animal’s head was down and it harvested
forage), standing, bedding (lying down), grooming, drinking, or
consuming mineral/salt (Fig. 1), based on behavior descriptions by
Kilgour et al. [48]. Observers used the same methods described by
Ganskopp and Bohnert [49], as modified by Augustine and Derner [50],
to use 30-s intervals instead of 1-min intervals during the observation
period. Within each 30-s intervals, observers recorded the behavior that
was performed for the majority of the interval. In 2021, we additionally
recorded whether steers were ruminating (i.e., chewing rumen bolus
material) when they were bedding or standing. Because we obtained
relatively low sample sizes of walking, we retroactively supplemented
visual observations of walking with data collected during steer pasture
rotations in 2021. These rotations were periods when steers were
“known” to be walking, so we considered them to be analogous to visual
observations.
We conducted two separate classification schemes, one which aimed

only to identify three categories for classification: stationary (including
standing, bedding, grooming, drinking, and consuming mineral/salt),
grazing, and walking (similar to previous studies of cattle behavior [19,
51]), and another that aimed to identify our three categories with the
stationary category split into ruminating or not ruminating. To assess
behavior over different epochs, we summarized the 30-s observations by
considering how many of the 30-s intervals within the longer epoch (e.

Fig. 1. Custom-built tracking devices for steer (A), containing a GPS unit (1), accelerometer (2), and batteries for both (3 and 4), which were fitted to steer via neck
collars (B). We conducted visual observations of steer behavior at 30-s intervals to label GPS and accelerometer data (C) and combined 30-s into longer epochs (D).
We filtered GPS data and calculated summary statistics for raw accelerometer data to generate features for each epoch (E). Finally, we used a random forest model to
classify behavior, and used three cross-validation methods to assess performance (D).
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g., the 180-s epoch was comprised of 6 30-s observation intervals; Fig. 1)
were classified as a single behavior, and assigned the behavior that
encompassed the majority (i.e.,≥ 50%) as the label for the longer epoch.
If all behaviors were < 50% of the epoch, we created a new behavior
class we labeled as ‘mixed.’ For the 60 s epoch, we assigned the behavior
as grazing if at least one of the two in-field observations was listed as
grazing, and if neither was grazing, we prioritized walking.
Because there were many more observations of stationary behavior

than grazing, walking, and mixed behaviors (Table 2), before modeling
we balanced the number of observations in each class [52] using a
multiclass version of the synthetic majority oversampling technique that
incorporates an additional cluster-based under-sampling for the major-
ity classes [53]; this was implemented via the scutr R package v. 0.2.0
[54]. The under- and over-sampling technique resulted in each behavior
class having the same number of observations, equal to the average
number of observations across all classes (Table 2). Ensuring a balanced
training set before attempting to classify and predict can prevent bias
[55], such as inflated model accuracies [56,57]. Additionally, similar
forms of data augmentation have proven useful for increasing perfor-
mance of deep learning methods applied to animal behavior classifica-
tion from accelerometers [58]; therefore, we expected that the under-
and over-sampling would assist in preventing our models from
overfitting.

2.4. Classification and model validation

For each classification scheme (one without rumination and one
with), and epoch (10, 30, 60, 90, 120, 180, 240, 300, 600, and 900 s), we
developed classifiers using GPS units and accelerometers (ACC) indi-
vidually, as well as both devices combined (GPS+ACC). Additionally,
we examined the implications of a simplified GPS+ACC dataset, by
combining GPS with mean pitch (GPS+Pitch) or mean VeDBA
(GPS+VeDBA), excluding the remaining features calculated from the
accelerometer data (Table 1). For the classification scheme with rumi-
nation, we examined classification using ACC-only data because we
expected the jaw movement would not be detected by location data

although jaw movements might be similar between grazing and rumi-
nating [59]. We also examined a GPS+ACC model, anticipating that the
GPS data would be useful for differentiating a stationary state from
grazing. We classified behavior using random forest models [60], which
have been used frequently with high accuracy (e.g., [61,62]) imple-
mented using the ranger R package v. 0.15.1 [63]. We grew 2000 trees in
our random forests and used a grid search to tune random forest models
to determine values for the number of features considered at splits,
minimum number of nodes in each tree, sampling scheme, and the
splitting rule [64,65]. We tested 2–4 values for each hyperparameter,
based on recommendations of Boehmke and Greenwell [64], and
assessed performance by area under the curve. Tuned hyperparameter
values varied across devices and epochs and are shown in Supplemen-
tary Materials Appendix B (Table B1 and Table B2).
For each of our models, we performed multiple cross-validations to

summarize overall performance. We first conducted a randomized 5-fold
cross validation (using an 80/20 split), and then held out individual
steer as the validation data [66], both techniques of which are
frequently used in the literature, but the leave-one-steer-out method was
expected to be more representative of the performance of the algorithm
on unobserved cattle [67]. We grouped ‘individuals’ by deployment
because collars were refit between deployments and may have been
fitted to a new individual, which we expectedmight result in variation in
accelerometer measurements due to differences in collar fit or
individual-specific movements. Finally, we trained our random forest
model on 2021 data (n = 45 steers) and used the 2020 observation data
(n = 15 steers) as a validation set to assess potential generalizability of
our model onto unseen individuals under somewhat different forage
conditions (i.e., precipitation was below average in 2020 resulting in
much less vegetation growth than was seen in 2021). We grew separate
random forests for predicting on test data and for assessing feature
importance (using the same seed values), as suggested by Nembrini et al.
[68]. We then assessed feature importance via the corrected impurity
index [68], which was normalized to be between 0 and 1 for relative
comparison across epochs and devices. Confusion matrices for all cross
validations are provided in the supplementary materials.

Table 1
Features derived from GPS locations (7) and accelerometer (ACC; 48) data for predicting free-ranging cattle behavior. The final column indicates which of the five
device combinations in which each feature was included. Classification schemes including both devices therefore had 55 features before application of recursive
feature elimination. Based on the results of the recursive feature elimination method, we removed mean DX, minimumDX, maximum DX, mean DY, mean DZ, maximum
VeDBA, DX skew, and SX skew from all models incorporating ACC data.

Feature Description Device combination(s)

GPS ​ ​
Turn angle Relative angle of movement path. GPS+ACC, GPS-only, GPS+VeDBA,

GPS+Pitch
Outgoing velocity Step length/time from previous point to focal point (m/min) GPS+ACC, GPS-only, GPS+VeDBA,

GPS+Pitch
Incoming velocity Step length/time from focal point to next point GPS+ACC, GPS-only, GPS+VeDBA,

GPS+Pitch
Buffer Point Count1 Count of points over a 21-point moving window (10 before and 10 after focal point) that are included in a

10 m buffer of the focal point
GPS+ACC, GPS-only, GPS+VeDBA,
GPS+Pitch

Buffer Point Sum1 Sum of point counts within a 10-m buffer around each point in a 21-point window GPS+ACC, GPS-only, GPS+VeDBA,
GPS+Pitch

|Rolling mean angle| Absolute value of moving window average of turn angles, over 5 locations GPS+ACC, GPS-only, GPS+VeDBA,
GPS+Pitch

Std. Dev. Angle Moving window standard deviation of turn angles over 5 locations GPS+ACC, GPS-only, GPS+VeDBA,
GPS+Pitch

Accelerometer - calculated means, standard error, skew, kurtosis, minimum, and maximum of each of the following metrics:
Static Acceleration (SX, SY,

SZ)
3 s moving window average of raw accelerometer data; represents acceleration due to gravity GPS+ACC, ACC-only

Dynamic Acceleration (DX,
DY, DZ)

Calculated as the difference between raw acceleration and static acceleration; represents acceleration
due to movement

GPS+ACC, ACC-only

VeDBA Vectorial sum of dynamic body acceleration, calculated as:
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D2X + D2Y + D2Z
√ GPS+ACC, GPS+VeDBA, ACC-only

Pitch
Angle of head, derived from static acceleration calculated as: arctan

⎛

⎜
⎝

SX
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2Y + S2Z
√

⎞

⎟
⎠

GPS+ACC, GPS+Pitch, ACC-only

1 See Brennan et al. (2021) for detailed description.

S.A. Cunningham et al. Smart Agricultural Technology 9 (2024) 100646 

4 



Metrics to assess model accuracy are derived from the number of true
positives (TP), false positives (FP), true negatives (TN) and false nega-
tives (FN). For each cross-validation, we calculated classification accu-
racy as the ratio of TP + TN compared to the total number of
observations (i.e., as a metric of how many observations were correctly
classified), averaging the values for 5-fold and leave-one-steer-out cross
validations to present the average expected performance. We then
examined behavior-specific sensitivity, specificity, and true skill statis-
tic. Behavior-specific metrics essentially consider the classification as a
binary problem where the behavior of interest is the positive case, while
the remaining behaviors make up the negative cases [69]. Sensitivity,
defined as TP/(TP + FN), is the true positive rate and indicative of the
proportions of observations that are identified as that behavior, while
specificity, TN/(TN+ FP), is the true negative rate and a measure of how
well the model identifies observations that are not the behavior of in-
terest [70]. Using sensitivity and specificity, we calculated the true skill
statistic (TSS; TSS = sensitivity+ specificity − 1) for each behavior
category. TSS values can range from 1 to − 1, with a value of 1 indicating
perfect agreement and values ≤ 0 being equivalent to random pre-
dictions. Because grazing and rumination were our main behaviors of

interest, we plotted sensitivity against specificity to visualize how well
models identified observations that were or were not grazing or rumi-
nation. Performance measures were estimated using the caret (v. 6.0–94;
[47]) and pROC (v. 1.18.5; [71]) R packages.

2.5. Activity budgets and travel distance from classified behavior

Having used the 2021 training data to create models, we then clas-
sified all unlabeled 2021 data across various device combinations and
epochs for both the classification scheme without rumination (GPS,
ACC, GPS+ACC, GPS+Pitch, and GPS+VeDBA) and the classification
scheme including ruminations (ACC and GPS+ACC). For each scenario,
we then summarized the time each steer spent grazing and ruminating
per day, assuming that steers performed the behavior for the entirety of
any epoch classified as grazing or ruminating. At each epoch, we also
assessed daily travel distances using all the data, then removed obser-
vations classified as stationary behavior, and recalculated daily travel
distances using only data predicted to be walking or grazing. In our
assessment of classified data, we included only full days with >98% of
expected collected data.

Table 2
Number of behavior observations of each behavior at each epoch across device combinations and behavioral classification schemes. The rows for balanced classes
indicates the number of observations of each behavior after over- and under-sampling. For five-fold cross-validation, we used an 80/20 split to partition all of the
observations into training and testing sets.

Epoch

10 30 60 90 120 180 240 300 600 900

No Ruminating ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
GPS-only ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Walking 2943 2943 1453 917 599 369 277 208 92 42
Grazing 5874 5874 3112 1941 1394 935 696 555 269 163
Stationary 11,047 11,047 5174 3608 2594 1715 1268 1020 468 295
Mixed - - 138 45 267 170 117 103 53 49
Balanced Classes 6621 6621 2469 1628 1214 797 590 472 220 137

ACC-only ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Walking 8754 8754 4129 734 501 319 235 182 88 53
Grazing 4823 4823 2529 1601 1173 795 591 481 243 159
Stationary 2341 2341 4129 2864 2093 1405 1050 849 420 276
Mixed - - 97 27 189 127 95 83 88 50
Balanced Classes 5306 5306 1979 1306 989 662 493 399 199 134

GPS+ACC ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Walking 2122 2122 1054 667 445 273 199 157 72 32
Grazing 4151 4151 2179 1374 1002 677 502 403 199 126
Stationary 7852 7852 3706 2570 1858 1238 911 734 342 219
Mixed - - 86 25 167 104 76 67 35 34
Balanced Classes 4708 4708 1756 1159 868 573 422 340 162 103

GPS+Pitch ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Walking 2122 2122 1054 667 445 273 199 157 72 32
Grazing 4151 4151 2179 1374 1002 677 502 403 199 126
Stationary 7852 7852 3706 2570 1858 1238 911 734 342 219
Mixed - - 86 25 167 104 76 67 35 34
Balanced Classes 4708 4708 1756 1159 868 573 422 340 162 103

GPS+VeDBA ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Walking 2122 2122 1054 667 445 273 199 157 72 32
Grazing 4151 4151 2179 1374 1002 677 502 403 199 126
Stationary 7852 7852 3706 2570 1858 1238 911 734 342 219
Mixed - - 86 25 167 104 76 67 35 34
Balanced Classes 4708 4708 1756 1159 868 573 422 340 162 103

With Ruminating ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
ACC-only ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Walking 2341 2341 1162 734 501 319 235 182 88 53
Grazing 4823 4823 2529 1601 1173 795 591 481 243 159
Stationary 4408 4408 2053 1442 1051 710 528 418 201 134
Ruminating 3688 3688 1819 1211 912 609 456 368 180 119
Mixed - - 97 27 189 127 95 83 46 50
Balanced Classes 3815 3815 1532 1003 765 512 381 306 152 103

GPS+ACC ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Walking 2122 2122 1054 667 445 273 199 157 72 32
Grazing 4151 4151 2179 1374 1002 677 502 403 199 126
Stationary 3939 3939 1835 1288 928 624 455 359 162 104
Ruminating 3338 3338 1647 1095 821 542 401 326 153 97
Mixed - - 86 25 167 104 76 67 35 34
Balanced Classes 3388 3388 1360 890 673 444 327 262 124 79
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3. Results

In 2020 we obtained 3929 observations of steer behavior at a 30-sec
resolution that were matched to GPS data (~33 h, 8 steers), 2470 ob-
servations that were matched to ACC data (~21 h, 8 steers), and 869
observations that matched both ACC and GPS data (~7 h, 5 steers). In
2021, we obtained 20,858 observations of steer behavior that was
matched to GPS data (~187 h, 44 steers), 15,918 observations of ACC
data (~133 h, 32 steers), and 14,805 observations matched to both ACC
and GPS data (~123 h, 30 steers). We classified data across 57 steers in
2021 (15–125 full days per steer) for GPS alone, 54 steers (13–130 days)
for ACC alone, and 52 steers (8–88 days) for GPS+ACC, GPS+Pitch, and
GPS+VedBA, resulting in approximately 3080 cattle days classified
across the entire grazing season, using training data from 2021. We
assessed location error from ~5.2 million GPS fixes across 11 dropped
collars. Mean error of stationary locations (based on the mean location)
was 2.78 m (σ = 1.76 m) and ranged 0.10–14.5 m.

3.1. Model performance

3.1.1. Behavioral scheme without rumination
Based on a randomized 5-fold cross validations, ACC and GPS+ACC

had the greatest classification accuracy for stationary, grazing, and
walking behaviors, while GPS alone often had the lowest classification
accuracy (Table 3, Fig. 2A). Despite a substantial decrease in size of the
training dataset (e.g., the number of observations of each behavior
category in the GPS+ACC model decreased from 4708 to 103), classi-
fication accuracy remained above 0.90 for ACC and GPS+ACC across
epochs (Table 3, Fig. 2A). For all device combinations, variation in
classification accuracy was lowest between 10 and 30 s and greatest
between 600 and 900 s (Fig. 2A). Amongst all behaviors, TSS scores
were generally the greatest for ACC or GPS+ACC, although the epoch
with the greatest TSS score varied by behavior (Fig. 2B). Grazing TSS
values ranged from 0.66 for GPS-only to 0.94 for GPS+ACC, with the
greatest TSS at 600 s (Fig. 2B). Grazing sensitivity (range of 0.73–0.96)
and specificity (range of 0.90–0.99) were both greatest for GPS+ACC,
followed closely by ACC and GPS+VeDBA, while GPS+Pitch and GPS
alone had the lowest sensitivities (Fig. 2C). Sensitivity was greatest at
600 s while specificity exceeded 0.98 for most epochs≥ 60 s in models of
GPS+ACC and ACC alone.
Leave-one-steer-out cross validation showed similar trends to the

randomized 5-fold cross validation, with GPS+ACC having the greatest
classification accuracies (Table 3, Fig. 2A). TSS was lower and more
variable for all behaviors across devices for leave-one-steer-out cross
validation than for the randomized 5-fold cross validation (Fig. 2B).
Grazing TSS was greatest for GPS+ACC at 600 s (0.90) and at 900 s

(0.84). The greatest sensitivity values were again obtained by a
GPS+ACC device combination, with select epochs of ACC and
GPS+VeDBA also performing well (Fig. 2C). GPS+ACC at epochs≥600 s
had the greatest sensitivity (≥0.90), and epochs ≥ 300 s also performed
well for ACC and GPS+VeDBA (Fig. 2C). Specificity was greatest for
GPS+ACC (0.97 at 600 s), and again ACC and GPS+VeDBA also per-
formed well in terms of specificity, especially at epochs ≥ 60 s (>0.91;
Fig. 2C).
Finally, using 2020 as a validation set, GPS+ACC consistently had

the greatest classification accuracy below 300 s, and GPS+VeDBA had
the greatest classification accuracy at 300 s and above (Table 3, Fig. 2A).
Grazing TSS was greatest in GPS+VeDBA at 900 s (0.91), followed
closely by GPS+ACC at 90 s (0.90; Fig. 2B). Sensitivity for grazing
ranged 0.41–1.0 and was generally greatest for GPS+VeDBA, followed
closely by GPS+ACC for epochs 90, 900, and 240 s (Fig. 2C). We note
greater variability in specificity for validating on 2020 data (0.62–0.97),
and while GPS+Pitch had the overall greatest specificity, the majority of
the best-performing models were again GPS+ACC, ACC alone, or
GPS+VeDBA (Fig. 2C). Specificity was greatest for longer epochs than
for 10 or 30 s epochs (Fig. 2C).

3.1.2. Behavioral scheme with rumination
When we partitioned stationary behavior into ruminating and not

ruminating, 5-fold cross validation indicated similar classification ac-
curacies between ACC-only and GPS+ACC across all epochs (Table 4,
Fig. 3A). TSS for ruminating while stationary was maximized at 0.75 at
240 s with GPS+ACC and 0.90 at 300 s with ACC alone. In contrast, TSS
for grazing was relatively stable across most epochs and device combi-
nations (falling between 0.89–0.92 between 30 and 120 s; Fig. 3B).
Sensitivity and specificity values for grazing were nearly exclusively
greater for GPS+ACC than for ACC alone across most epochs (Fig. 3C).
Sensitivity for ruminating while stationary was above 0.90 for ACC only
at various epochs (60, 90, 180, and 300 s), and while specificity was
greatest for ACC only at 300 s (0.98), GPS+ACC also exceeded 0.97 at
30–90 s (Fig. 3C).
In the leave-one-steer-out cross validation, GPS+ACC and the ACC-

only model also showed similar classification accuracies across all
epochs, again with an increased amount of variability compared to 5-
fold cross validation and as the epoch increased in size (Table 4,
Fig. 3A). The greatest TSS for ruminating was achieved at 300 s using
GPS+ACC (0.71; Fig 3B). For grazing TSS, GPS+ACC had better scores
than ACC alone, with the greatest values at 600 s. Sensitivity and
specificity for grazing was generally greater with GPS+ACC, although
specificity was generally higher than sensitivity, with both metrics
exceeding 0.90 only at 600 and 900 s (Fig. 3C). Ruminating while sta-
tionary showed a similar pattern of specificity exceeding sensitivity,
with the greatest in both metrics being achieved using ACC only
(Fig. 3C). We note that rumination behavior was not recorded by ob-
servers in 2020, so we could not use 2020 as validation data.

3.2. Feature importance

For the behavioral scheme without rumination, we observed simi-
larities in features driving classifications across devices and epochs
(Fig. 4A). For instance, mean VeDBA was one of the top five features in
every device combination in which it was included, as were outgoing
and incoming velocities, standard error of the DZ axis (i.e., motion of the
head up and down), and the buffer point sum variable (a measure of
stationarity; Fig. 4A). The relative decrease in impurity was lower for the
top five features of GPS+ACC and ACC alone than for other device
combinations, indicating that single features were not driving classifi-
cation (Fig. 4A). For the behavioral scheme with rumination, the
GPS+ACC device combination showed incoming and outgoing velocity
as frequently in the top five most important features, in addition to
minimum and mean VeDBA and standard error of the DZ axis which was
similar to the important variables seen in our other classification scheme

Table 3
Device combination with greatest classification accuracy of stationary, mixed,
grazing, and walking behaviors in free-ranging cattle in the shortgrass steppe of
northeastern Colorado across epochs estimated from three methods of validation
(randomized 5-fold, leave-one-steer-out, and predicting on 2020 data). The
associated average classification accuracies are shown in parentheses.

Epoch (s) Random 5-fold Leave-one-steer-out 2020 Validation

10 GPS+ACC (0.92) GPS+ACC (0.87) GPS+ACC (0.86)
30 GPS+ACC (0.94) GPS+ACC (0.89) GPS+ACC (0.89)
60 GPS+ACC (0.94) GPS+ACC (0.86) GPS+ACC (0.88)
90 GPS+ACC (0.95) GPS+ACC (0.90) GPS+ACC (0.91)

GPS+VeDBA (0.91)
120 ACC (0.93) GPS+ACC (0.85) GPS+ACC (0.85)
180 GPS+ACC (0.95) GPS+ACC (0.84) GPS+ACC (0.87)
240 GPS+ACC (0.94) GPS+ACC (0.84) GPS+ACC (0.86)
300 GPS+ACC (0.96) GPS+ACC (0.82) GPS+VeDBA (0.88)
600 ACC (0.96) GPS+ACC (0.89) GPS+VeDBA (0.90)
900 GPS+ACC (0.94) GPS+ACC (0.82) GPS+VeDBA (0.91)
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(Fig. 4). In the ACC-only classifications, minimum and mean VeDBA
along with standard error of the DX, DY, and DZ axes were consistently
important across epochs (Fig. 4B).

3.3. Activity budgets and travel distance

For the behavioral scheme without rumination, across epochs and
device combinations, daily travel distances (from only grazing and
walking) ranged on average from 3.5–7.7 km day-1 (Fig. 5A). Travel
distances also tended to decrease as epoch increased, but in a similar
manner across devices (Fig. 5A). Daily travel distances declined by an
average of 1.6 km day-1 after removing stationary behaviors (range
1.0–2.9 km day-1; Fig. 5B). Overall, we also observed minimal variation
in activity budgets across devices with the exception of GPS alone,
which had the shortest and longest estimates of grazing time (12.3 h day-
1 at 10 s to 5.1 h day-1 at 900 s). Otherwise, estimates of grazing time
ranged from 7.6–9.9 h day-1 on average across devices and epochs
(Fig. 5C). Grazing was predicted to occur with higher frequency just
after dawn and before dusk (Fig. 5D; Supplementary Materials: Fig. C1).
For the behavioral scheme with rumination, daily travel distances

(excluding stationary behaviors) were estimated only from GPS+ACC
and ranged on average from 4.8 to 7.6 km day-1 across epochs,
decreasing as epoch increased (Fig. 6A). Differences between travel
distances calculated with all locations instead of with the removal of
stationary behavior were approximately 1 km greater. Rumination time
was essentially the same when assessed with GPS+ACC (5.5–7.0 h day-1)
compared to only ACC (5.8–7.8 h day-1; Fig. 6B). Time spent ruminating

Fig. 2. Performance metrics for random forest models classifying free-ranging steer behavior as stationary, mixed (≥ 60 s), grazing, and walking in 2021 in
shortgrass steppe of Colorado, USA. We summarized (A) classification accuracy (with 95% confidence intervals), (B) the true skill statistic for each behavior, and (C)
sensitivity against specificity for grazing. We compared metrics across different methods of cross validation, including randomized 5-fold cross validation (left
column), leaving an individual steer out (center column), and finally trained the models on data from 2021 and used data from 2020 as a validation data set
(right column).

Table 4
Device combination with greatest average classification accuracy of stationary,
ruminating while stationary, mixed, grazing, and walking behaviors in free-
ranging cattle in the shortgrass steppe of northeastern Colorado, across epochs
estimated from two methods of validation (randomized 5-fold and leave-one-
steer-out). The associated average classification accuracies are shown in
parentheses.

Epoch (s) Random 5-fold Leave-one-steer-out

10 GPS+ACC (0.87) GPS+ACC (0.77)
30 GPS+ACC (0.90) GPS+ACC (0.80)
60 GPS+ACC (0.90) GPS+ACC (0.79)
90 ACC (0.91) GPS+ACC (0.82)
120 ACC (0.89) GPS+ACC (0.78)
180 ACC (0.90) GPS+ACC (0.78)
240 ACC (0.87) GPS+ACC (0.78)
300 ACC (0.90) GPS+ACC (0.74)
600 GPS+ACC (0.89) GPS+ACC (0.78)
900 GPS+ACC (0.89) GPS+ACC (0.72)
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Fig. 3. Performance metrics for random forest models classifying free-ranging steer behavior as stationary and not ruminating, ruminating while stationary, mixed
(≥ 60 s), grazing, and walking in 2021 in shortgrass steppe of Colorado, USA. We summarized (A) classification accuracy (with 95% confidence intervals, (B) the true
skill statistic for each behavior, and (C) sensitivity against specificity for grazing and ruminating while stationary. We compared metrics across two cross validation
methods: randomized 5-fold cross validation (left column) and leaving an individual steer out (right column).
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also decreased as epoch increased (Fig. 6B). In contrast, average time
being stationary while not ruminating was relatively stable across
epochs (5.6–6.7 h day-1) except for longer epochs whereby this behavior
dropped to a minimum of 4.5 h day-1 at 300 s and a maximum of 7.0 h
day-1 at 600 s (Fig. 6B). Average grazing time per day was also similar
between device combinations, ranging from 7.9–8.8 h day-1 for
GPS+ACC and 7.5–8.3 h day-1 for ACC alone (Fig. 6B). Grazing time was
again most frequent near dawn and dusk, while peak rumination while
stationary hours were overnight (Fig. 6C).

4. Discussion

Our objectives were to determine an optimal combination of devices
and epochs for identifying grazing and rumination behavior in free-
ranging cattle fitted with GPS and accelerometers (ACC), while striv-
ing to limit hardware and software complexity, and to assess implica-
tions for interpretation of behaviors classified at various epochs. We
aimed to provide optimum ranges for data collection, as called for by
Anderson et al. [31], as a means to establish a benchmark for future
studies and applications. We found that the highest behavioral predic-
tion accuracy (0.90 based on leave-one-steer-out analysis) could be
achieved using GPS plus the full suite of accelerometer metrics analyzed

Fig. 4. Relative feature importance of the top five features across epochs (x-axis), device combinations, and cross-validation method for (A) the behavioral clas-
sification scheme not including rumination and (B) the behavioral classification scheme including rumination. Feature importance was normailized to show relative
decrease in impurity. Number of features varied by device combination, with GPS+ACC having 47 features, GPS+VeDBA and GPS+Pitch having 8, ACC-only having
41, and GPS-only having 7 features.
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at a 90-s epoch. However, if a computationally less intensive prediction
is desired, overall accuracy only declined to 0.89 with the simplified
GPS+VeDBA model at the 90-s epoch. Perhaps most importantly, we
found that using the full suite of accelerometer metrics calculated at a

30-s epoch, without any GPS data, could achieve an accuracy of 0.86,
with even smaller confidence intervals than the 90-s epoch predictions.
When accelerometer metrics were combined with GPS fixes at 30- to
120-s epochs, prediction accuracy was only slightly above 0.86.

Fig. 5. Summary of cattle data classified with the behavioral classification scheme without ruminating. The distribution of daily travel distances show the summed
distance between locations for classfied steer data (A), excluding stationary and mixed behaviors, and the difference in estimates between including and excluding
lcoations classified as stationary or mixed are shown in panel B. Vertical lines within densities indicate the mean daily travel distance for each epoch. Activity budgets
(C) of each device combination reflect mean values in hours for amount of time spent in that behavior each day across device combinations and epochs. Panel D
shows the relative frequency of data points classified as grazing for each hour of the day at 90 s for GPS+ACC. Darker shading indicates more individuals, while the
lightest shading has the fewest individuals.
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Therefore, if the priority is to minimize battery requirements by using a
GPS fix rate that is longer than 2 minutes, the optimal approach is to
predict behavior using the accelerometer metrics at a 30-s epoch, and
then combine this with whatever GPS fix interval is desired given
desired battery life and objectives for assessing the animal’s location and
movement pattern. For example, if GPS fixes are collected at 5-min (300
s) intervals, then the optimal approach is to predict behavior at 30-s
epochs using the accelerometer metrics, and then summarize these for
each 5-min interval between GPS fixes. Similarly, if the goal is to include

prediction of rumination behavior, then prediction accuracy is maxi-
mized using a 90-s epoch for GPS+ACC, but only slightly lower accuracy
is achieved using the accelerometer-only data at 30 s, which could again
be combined a 5-min or longer GPS fix interval.

4.1. Performance across device combinations and epochs

While it is not surprising that the complexity of information obtained
from GPS+ACC generally achieved the greatest accuracy across epochs,

Fig. 6. Summary of cattle data classified according the behavioral classification scheme with ruminating while stationary. The distribution of daily travel distances,
estimated from GPS+ACC, show the summed distance between locations for classfied steer data (A), excluding stationary and mixed behaviors. Vertical lines within
densities indicate the mean daily travel distance for each epoch. Activity budgets (B) of each device combination reflect mean values in hours for amount of time
spent in that behavior each day across device combinations and epochs. Panel C shows the relative frequency of data points classified as grazing or ruminating while
stationary for each hour of the day at 90 s for ACC (left) and GPS+ACC (right). Darker shading indicates more individuals, while the lightest shading has the fewest
individuals.
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our results indicate that GPS units in combination with VeDBA can
achieve similar accuracies in simplified behavioral classification
schemes. This trade-off allows for less processing complexity while
maintaining accurate behavioral predictions, a trade-off that could
allow for easier on-board calculation [72]. Notably, VeDBA is the
vectorial sum of all three axes, and therefore does not depend on
orientation [43], which means this metric is robust to collar rotations or
differences in orientation with unit attachment (e.g., as suggested in
Versluijs et al. [69]). While ACC alone was also successful in accurately
classifying behaviors, the usefulness in this context is likely limited, as
we expect most ranchers and researchers in extensive rangelands would
also be interested in an associated location for behavior, and the pro-
cessing cost in time and complexity likely outweighs the practicality of
this device alone.
Using GPS alone to classify behavior generally had the poorest per-

formance, with the primary driver likely being location error. While our
estimate of device error was <3 m on average, we expect that error was
greater while collars were on animals relative to a stationary collar on
the ground, as steers may be grouped together which may add inter-
ference to GPS signals. Shorter intervals between fixes usually improves
location accuracy [73], though some researchers have suggested
increased GPS error from shorter time periods due to autocorrelation
and accumulation of error [74]. Additional processing of GPS data may
also improve accuracy of locations (e.g., [23]); however, such methods
are often computationally intensive, especially with frequent fixes [75].
Thus, researchers and producers will likely need additional sensors to
obtain reliable estimates of grazing. A potential methodological
enhancement would be to collect GPS data only when the accelerometer
indicates movement to preserve battery life and reduce the amount of
movement attributed to GPS error [76,77].
We had anticipated a greater decrease in accuracy as epochs

increased due to summarizing behavior over longer time intervals, and
while we noted an increase in variability as epochs became longer,
average classification accuracy was sometimes just as great at 300 s as it
was at 90 s. Indeed, TSS indicated similar behavior-specific performance
across epochs for a given device combination. We surmise that because
cattle are large, relatively slow-moving animals that spend the vast
majority of their time performing a small number of behaviors [78],
accelerometer signals were sufficiently differentiable at longer epochs.
In contrast, if we had focused on rare or short-duration behaviors (e.g.,
headshaking; [79]), we might have seen a more profound impact of
epoch on accuracy (as in Yu et al. [72]). The decreased accuracy
observed in our ACC- and GPS-only models at 10 s is not surprising and
indeed consistent with previous attempts of classifying cattle behavior at
sub-minute intervals, likely a result of GPS error making it difficult to
differentiate movement from stationary behaviors [80], or because the
epoch is too short relative to the behavior [24]. In a similar study on
donkey behavior, error was greatest at the 15-s epoch and decreased
until the 120-s epoch [81], which is within the range of our optimal
epochs for cattle behavior classification, though our results indicated
greater performance at 60–90-s epochs. For some behaviors, a
variable-time approach may improve classification accuracy [82,83],
though this has the potential to increase processing requirements [84].
We used three methods of cross validation for our classification

models to more robustly explore model performance related to simi-
larities between training data and unlabeled data. First, our randomized
5-fold cross-validation was expected to have greater accuracy due to the
large array of signals from a larger variety of animals which works to
improve predictive ability [58]. Thus, performance decreases when one
uses a leave-one-steer-out approach, given how variable animals can be
in their daily activity patterns [85] or device variability [86]. Using data
from 2020 showed how robust models could be across years given po-
tential differences in forage conditions impacting acceleration or
movement patterns. Despite this potential confound, accuracies were
generally on par with the first two cross validation exercises, with
minimal decrease in performance of grazing, although walking was

classified with substantially lower success. This could be a result of
steers spending more time opportunistically foraging in poor grazing
conditions, rather than distinct walking and grazing periods that might
be seen in years in which forage biomass was plentiful (i.e., 2021).
Indeed, when using 2020 data as a validation, walking was mislabeled as
grazing nearly as often as it was correctly identified as walking, there-
fore, we suspect the poorer performance of the models applied to data
from 2020 can be attributed to differences in grazing conditions rather
than individual variability or sample size (confusion matrices provided
in Supplementary Materials: Appendix D).

4.2. Feature importance and differentiation of behaviors

We observed several patterns in behavior-specific performance of
our random forest models. For grazing and rumination, specificity was
generally high, indicating that the incidence of false negatives was
greater than false positives, therefore, our models were likely under-
estimating these behaviors. We conjecture that these instances of
ruminating and grazing are likely being confused with ‘mixed’ behavior,
which is inherently not a clear signal. While some researchers remove
observation periods that include more than one behavior before training
their machine learning models, we opted to retain them in a ‘mixed’
category given the nature of signal aggregation that cumulated many
behaviors into a single category, and indeed Resheff et al. [87] suggested
that inclusion of mixed segments can be beneficial. Additionally, the
number of separate behavior observations decreased as epoch increased,
which may have increased variation among observations, though clas-
sification results indicated a relatively small decrease in accuracy.
While our models distinguished rumination behavior with moderate

success, it comes at the cost of needing to include the full suite of
accelerometer features. Using the GPS+ACC combination, we observed
some of the greatest proportions of one behavior (ruminating while
stationary) being classified as another (not ruminating). For example, at
the shortest epochs, not ruminating was predicted to be ruminating at
nearly twice the rate, while at the longest epochs, rate of misclassifica-
tion was similar between the two behaviors. Indeed, we noted greater
differences in TSS of all behaviors across epochs when we included
ruminating. Therefore, given the challenges and costs of accurately
classifying ruminating, we suggest this only be done when there is a
specific interest in rumination time.
Mean VeDBA and the incoming velocity were generally the most

influential variables. We were somewhat surprised that pitch was rela-
tively less important, given that head movements were expected to help
distinguish foraging behavior [50]. We had also anticipated greater
importance of the turn angle between GPS locations, singly or over
several time points, as we had expected extreme angles may have been
indicative of stationary error [88]. The buffer point sum and count
variables derived following Brennan et al. [36] were also in the top five
most important variables in device combinations with GPS. Brennan
et al. [36] suggested that the buffer point sum variable would likely
capture locations that were scattered across a relatively small area due
to GPS error when the animals were stationary, and we suspect it
functioned the same way herein. However, we suggest that this variable
may be refined across time intervals (i.e., adjusting the buffer radius or
number of points considered), which may improve identification of
stationary behaviors at the shortest time intervals.

4.3. Inferences of travel distance and activity budgets from classified data

The average daily travel distance estimated using only walking and
grazing locations was 1 km shorter than the daily travel distances that
included locations classified as stationary, indicating that GPS error can
have a significant impact on estimates of travel distance [89]. Though
our estimates of travel distance nearly doubled between the shortest and
longest epochs, they were similar to those published elsewhere at both
short (60 s) and long (600 s) epochs [21]. However, our estimates
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(6.9–7.1 km day-1 at 5-min resolution after removing stationary loca-
tions) were less than estimates of McIntosh et al. ([30]; 9.3 km day-1

without removing stationary locations), which might highlight the po-
tential impact of GPS error on estimates of daily travel distances if
behavioral states are not classified. We also note variation in estimated
daily travel distance may be partially due to differences in pasture [21]
or herd size [33] influencing path tortuosity and velocity while grazing,
in addition to effects of GPS fix rate. For example, McIntosh et al. [90]
noted a strong relationship between daily travel distance and pasture
size, with cattle moving 8–10 km day-1 in 1000–3500 ha pastures; thus,
because our pastures were considerably smaller (e.g., 130–360 ha), the
lower estimates of daily travel distance should perhaps be expected.
Whenmaking comparisons, we also expect that breed, terrain, and water
locations may also play a role in dictating how cattle move and forage
[91]. Similarly, daily grazing time estimates were consistent with those
generated by others (e.g., [30,36]), but they were slightly less than the
9–10 h day-1 predicted by Augustine et al. [33] for steers at the same
study site. This difference is consistent with behavior-specific model
performance metrics in our current study indicating that grazing was
likely to be underestimated. Despite this, classified periods of rumi-
nating while stationary throughout the day occurred primarily opposite
of peak grazing periods, and was greater overnight than during daylight
hours, which is consistent with previous observations of cattle activity
budgets [48,78]. Thus, collectively it seems that our classification
models produced reasonable estimates of behavior for free-ranging
cattle.

4.4. Tradeoffs between longevity and durability

Our rate of successful data collection highlights some of the chal-
lenges of precision livestock management applications in extensive
rangelands. Frequently, data loss was the result of one sensor working
while the other failed (e.g., due to battery connection failure), the collar
being pulled over the steers’ head, or the resin case breaking open.
During our study, cattle were frequently observed knocking collars
against fences and water troughs, which we assume was the primary
driver of device failure. Yet, commercially built tracking devices can
also suffer catastrophic technical failures, averaging approximately 25%
of units (but ranging up to 100%; [92]). Commercial collars generally
come with a much higher price tag than custom-built devices; however,
this benefit may be canceled out with the additional costs in personnel
time and technical knowledge [15]. Using our custom-built devices, we
were able to replace batteries and repair sensors of custom devices
during periodic weighings of cattle, which is usually not an option with
commercial devices. At the same time, we acknowledge that at current
costs of the devices we used, applications are likely to be primarily for
experimental research rather than for use in commercial operations.
Further improvements in durability combined with a reduction in costs
and the capacity to recharge or replace batteries may increase the
effective use of these sensors in precision livestock management
applications.

5. Conclusions

Our objective for this study was to guide researchers and commercial
bio-logging enterprises in determining device combinations and epochs
for observing behavior in free-ranging cattle. The overall information
collected per day decreased exponentially as the analytical time step
increased, but even summarizing data over 90-s epochs resulted in 960
epochs day-1, which can still present computational challenges when
collecting data over extended periods of time (i.e., a 4-month grazing
season or longer). Notably, accuracy could remain high if further
reduced to a 5-min (300 s) epoch (288 epochs day-1). Additionally, the
use of GPS+VeDBA provided accurate and reasonable classification of
stationary, grazing, and walking behavior in free-ranging cattle while
also reducing the number of necessary variable calculations and

subsequent size of the dataset. Therefore, selecting an optimal epoch and
using a reduced set of sensor features improves our ability to collect,
process, and transmit data that provides inferences about cattle behavior
and can have immediate impacts related to food production and ran-
geland conservation.
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